COVID-19 Salgını Döneminde Fiziksel Hareketsizlik

Author :  

Year-Number: 2021-TJHS Vol 2 Issue 3
Yayımlanma Tarihi: 2021-12-02 15:24:17.0
Language : English
Konu : Statistics
Number of pages: 59-63
Mendeley EndNote Alıntı Yap

Abstract

Koronavirüs (COVID-19) öncelikle solunum sistemini hedef alan patojenlerden birisidir. Bu hastalığın Çin’de
2019 yılının Aralık ayının sonlarında ortaya çıktığı değerlendirilmektedir. COVID-19 hastalığının başlangıçtaki
en yaygın semptomları ateş, öksürük ve yorgunluktur. COVID-19 enfeksiyonu için spesifik önleyici veya tedavi
edici tıbbi müdahalelerin yokluğu ve bulaşma hızını engellemek için bireylerin sosyal etkileşimlerden kaçınması
ve evde kalmaları gibi öneriler ortaya çıkmıştır. COVID-19’un yayılmasını engellemek için hükümetler,
karantinayı sıkılaştıran ve tüm vatandaşların olabildiğince evde kalmasını gerektiren önlemler almaktadır.
Bu önlemlerin herkesin hayatı üzerinde zararlı sonuçları vardır. Bunlardan birisi de fiziksel hareketsizliktir.
Evde karantinanın orta şiddetli fiziksel aktivite seviyesinde bir düşüşe neden olacağı ve hareketsiz davranışa
neden olması muhtemeldir. Dünya çapında insanların fiziksel aktivite seviyesini takip eden giyilebilir cihaz
geliştiren bir Amerikan şirketi olan Fitbit; geçen yılın aynı zamanlarına göre neredeyse tüm ülkelerde ortalama
adım sayısının %7’den %38’e kadar azaldığını bildirmişlerdir. Bu da karantinanın insanların fiziksel aktivite
seviyelerinde önemli bir düşüşe sebep olduğunu göstermektedir. Fiziksel aktivitenin genel ve kardiyovasküler
sağlık durumu üzerindeki etkileri göz önüne alındığında, insanların evde egzersiz yapmaları gerektiği tavsiye
edilmektedir. Karantina sırasında aktif kalmak ve fiziksel egzersiz rutinini sürdürmek zihinsel ve fiziksel sağlık
için çok önemli olacaktır. Bu dönemde koşu bantları, bisikletler, fitness topları, elastik bantlar ve ağırlıklar
kullanılarak egzersizler yapılabilir. Video ve çevrimiçi kılavuzlu protokollerle yürütülen egzersizler de faydalı
olabilir.

Keywords

Abstract

Coronavirus (COVID-19) is one of the pathogens that primarily targets the respiratory. This disease is
considered to have emerged in China in late December 2019. The most common initial symptoms of COVID-
19’un are fever, cough and tiredness. The absence of spesific preventive or therapeutic medical interventions
for COVID-19 infection and recommendations such as avoiding social interactions and staying at home have
emerged to prevent the rate of transmission. To prevent the spread of the COVID-19, governments are taking
measures to tighten quarantine and require all citizens to stay at home as much as possible. These measures
have harmful consequences for everyone’s life. One of them is physical inactivity. It is likely that quarantine at
home will cause a decrease in moderate physical activity level and cause sedentary behavior. Fitbit, an American
company that develops a wearable device that tracks people’s physical activity levels worldwide; reported that
the average number of steps in almost all countries decreased from %7 to %38 compared to the same time of
last year. This shows that quarantine causes a significant decrease in people’s physical activity levels. Given the
effects of physical activity on overall and cardiovascular health, it is recommend that people exercise at home.
Staying active during quarantine and maintaning a physical exercise routine will be crucial for mental and
physical health. During this period, exercise can be done using treadmills, bicycles, fitness balls, elastic bands
and weights. Exercises conducted with video and online guided protocols can also be helpful.

Keywords


  • 1. Bogoch II, Watts A, Thomas-Bachli A, Huber C, Kraemer MU, Khan K. Pneumonia of unknown aetiology in Wuhan, China: potential for international spread via commercial air travel. Journal of travel medicine. 2020;27(2):taaa008.

  • 2. Lu H, Stratton CW, Tang YW. Outbreak of pneumonia of unknown etiology in Wuhan, China: The mystery and the miracle. Journal of medical virology. 2020;92(4):401-2.

  • 3. Li Q, Guan X, Wu P, Wang X, Zhou L, Tong Y, et al. Early transmission dynamics in Wuhan, China, of novel coronavirus–infected pneumonia. New England Journal of Medicine. 2020.

  • 4. Wang W, Tang J, Wei F. Updated understanding of the outbreak of 2019 novel coronavirus (2019‐nCoV) in Wuhan, China. Journal of medical virology. 2020;92(4):441-7.

  • 5. Ren L-L, Wang Y-M, Wu Z-Q, Xiang Z-C, Guo L, Xu T, et al. Identification of a novel coronavirus causing severe pneumonia in human: a descriptive study. Chinese medical journal. 2020.

  • 6. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The lancet. 2020;395(10223):497-506.

  • 7. Peçanha T, Goessler KF, Roschel H, Gualano B. Social isolation during the COVID-19 pandemic can increase physical inactivity and the global burden of cardiovascular disease. American Journal of Physiology-Heart and Circulatory Physiology. 2020;318(6):H1441-H6.

  • 8. Bourouiba L. Turbulent gas clouds and respiratory pathogen emissions: potential implications for reducing transmission of COVID-19. Jama. 2020;323(18):1837-8.

  • 9. Crisafulli A, Pagliaro P. Physical activity/inactivity and COVID-19. European journal of preventive cardiology. 2020:2047487320927597.

  • 10. Tremblay MS, Aubert S, Barnes JD, Saunders TJ, Carson V, Latimer-Cheung AE, et al. Sedentary Behavior Research Network (SBRN) - Terminology Consensus Project process and outcome. The international journal of behavioral nutrition and physical activity. 2017;14(1):75.

  • 11. Arries EJ, Maposa S. Cardiovascular risk factors among prisoners: an integrative review. J Forensic Nurs. 2013;9(1):52-64.

  • 12. Belavý DL, Gast U, Daumer M, Fomina E, Rawer R, Schießl H, et al. Progressive adaptation in physical activity and neuromuscular performance during 520d confinement. PloS one. 2013;8(3):e60090.

  • 13. Hallal PC, Andersen LB, Bull FC, Guthold R, Haskell W, Ekelund U, et al. Global physical activity levels: surveillance progress, pitfalls, and prospects. The lancet. 2012;380(9838):247-57.

  • 14. Brownson RC, Boehmer TK, Luke DA. Declining rates of physical activity in the United States: what are the contributors? Annu Rev Public Health. 2005;26:421-43.

  • 15. Church TS, Thomas DM, Tudor-Locke C, Katzmarzyk PT, Earnest CP, Rodarte RQ, et al. Trends over 5 decades in US occupation-related physical activity and their associations with obesity. PloS one. 2011;6(5):e19657.

  • 16. Stamatakis E, Ekelund U, Wareham NJ. Temporal trends in physical activity in England: the Health Survey for England 1991 to 2004. Preventive medicine. 2007;45(6):416-23.

  • 17. Knuth AG, Hallal PC. Temporal trends in physical activity: a systematic review. Journal of Physical Activity and Health. 2009;6(5):548-59.

  • 18. Lee I-M, Shiroma EJ, Lobelo F, Puska P, Blair SN, Katzmarzyk PT, et al. Effect of physical inactivity on major non-communicable diseases worldwide: an analysis of burden of disease and life expectancy. The lancet. 2012;380(9838):219-29.

  • 19. WHO J. Global health risks: mortality and burden of disease attributable to selected major risks. Geneva: WHO. 2009.

  • 20. Kohl 3rd HW, Craig CL, Lambert EV, Inoue S, Alkandari JR, Leetongin G, et al. The pandemic of physical inactivity: global action for public health. The lancet. 2012;380(9838):294-305.

  • 21. Fernandes RA, Zanesco A. Early physical activity promotes lower prevalence of chronic diseases in adulthood. Hypertension Research. 2010;33(9):926-31.

  • 22. Imbeault P, Makvandi E, Batal M, Gagnon-Arpin I, Grenier J, Chomienne M-H, et al. Physical inactivity among Francophones and Anglophones in Canada. Canadian Journal of Public Health. 2013;104(6):S26-S30.

  • 23. Admiraal WM, van Valkengoed IG, L de Munter J, Stronks K, Hoekstra JB, Holleman F. The association of physical inactivity with Type 2 diabetes among different ethnic groups. Diabetic medicine. 2011;28(6):66872.

  • 24. Arsenault B, Rana J, Lemieux I, Despres J, Kastelein J, Boekholdt S, et al. Physical inactivity, abdominal obesity and risk of coronary heart disease in apparently healthy men and women. International journal of obesity. 2010;34(2):340-7.

  • 26. Arredondo A, Zuñiga A, Parada I. Health care costs and financial consequences of epidemiological changes in chronic diseases in Latin America: evidence from Mexico. Public Health. 2005;119(8):711-20.

  • 27. Bahia L, Coutinho ESF, Barufaldi LA, de Azevedo Abreu G, Malhão TA, de Souza CPR, et al. The costs of overweight and obesity-related diseases in the Brazilian public health system: cross-sectional study. BMC public health. 2012;12(1):440.

  • 28. Dall T, Nikolov P, Hogan PF. Economic costs of diabetes in the US in 2002. Diabetes care. 2003;26:917-32.

  • 29. Davis JC, Verhagen E, Bryan S, Liu-Ambrose T, Borland J, Buchner D, et al. 2014 consensus statement from the first Economics of Physical Inactivity Consensus (EPIC) conference (Vancouver). Br J Sports Med.

  • 30. Bertoldi AD, Hallal PC, Barros AJ. Physical activity and medicine use: evidence from a population-based study. BMC public health. 2006;6(1):1-6.

  • 31. Codogno JS, Fernandes RA, Sarti FM, Júnior IFF, Monteiro HL. The burden of physical activity on type 2 diabetes public healthcare expenditures among adults: a retrospective study. BMC Public health. 2011;11(1):275.

  • 32. Pippi R, Buratta L, Germani A, Fanelli CG, Mazzeschi C. Physical Activity Habits and Well-Being among 6-Year-Old Children: The “Improving Umbrian Kids’ Healthy Lifestyle”, an Uncontrolled Pilot Study Project. International Journal of Environmental Research and Public Health. 2020;17(17):6067.

  • 34. Nasi M, Patrizi G, Pizzi C, Landolfo M, Boriani G, Dei Cas A, et al. The role of physical activity in individuals with cardiovascular risk factors: an opinion paper from Italian Society of Cardiology-Emilia RomagnaMarche and SIC-Sport. Journal of Cardiovascular Medicine. 2019;20(10):631-9.

  • 35. Arnett DK, Blumenthal RS, Albert MA, Buroker AB, Goldberger ZD, Hahn EJ, et al. 2019 ACC/AHA guideline on the primary prevention of cardiovascular disease: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Journal of the American College of Cardiology. 2019;74(10):e177-e232.

  • 36. Womack VY, De Chavez PJ, Albrecht SS, Durant N, Loucks EB, Puterman E, et al. A Longitudinal Relationship between Depressive Symptoms and Development of Metabolic Syndrome: the Coronary Artery Risk Development in Young Adults (CARDIA) Study. Psychosomatic medicine. 2016;78(7):867.

  • 37. Thompson PD, Franklin BA, Balady GJ, Blair SN, Corrado D, Estes NM, et al. Exercise and acute cardiovascular events: placing the risks into perspective. Medicine and science in sports and exercise. 2007;39(5):886-97.

  • 38. Ricci F, Izzicupo P, Moscucci F, Sciomer S, Maffei S, Di Baldassarre A, et al. Recommendations for Physical Inactivity and Sedentary Behavior During the Coronavirus Disease (COVID-19) Pandemic. Frontiers in Public Health. 2020;8:199.

  • 39. Mattioli AV, Nasi M, Cocchi C, Farinetti A. COVID-19 outbreak: impact of the quarantine-induced stress on cardiovascular disease risk burden. Future Medicine; 2020.

  • 40. Mattioli AV, Sciomer S, Cocchi C, Maffei S, Gallina S. Quarantine during COVID-19 outbreak: changes in diet and physical activity increase the risk of cardiovascular disease. Nutrition, Metabolism and Cardiovascular Diseases. 2020;30(9):1409-17.

                                                                                                                                                                                                        
  • Article Statistics